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Jet pump diffuser performance is analyzed, both in terms of past experimental work dealing 
with the high inlet flow distortions involved and in the sense that this problem is amenable 
to predictive investigation by computational fluid dynamics techniques. In these highly 
nonuniform flow conditions, diffusers are seen to justify their inclusion in a jet pump 
design, for regaining static pressure downstream of the vacuum chamber, even though 
their performance in effectiveness terms is lowered by about two thirds at high inlet flow 
distortion levels. A satisfactory correlation has been found between outlet and inlet 
conditions and diffuser area ratio, extending well beyond past experimental published 
results for diffuser geometry and distorted inlet flows. 
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I n t r o d u c t i o n  

Jet pumps or ejectors are concerned with using a jet of primary 
fluid to induce a peripheral secondary flow, often against a 
substantial back pressure. The induction process produces a 
partial vacuum in the secondary flow inlet so this fluid is subject 
to a rapid repressurization to the jet pump exit section value, 
and a diffuser is normally found useful in producing the change 
from a low-pressure, fast-moving flow to a higher pressure, 
slower fluid at outer  (Engineering Sciences Data Unit 1988a, 
1988b) (Figure 1). The diffuser is found useful even in liquid-gas 
multiphase flows (Neve 1988, 1991, Owen et al. 1992), although 
its pressure recovery performance suffers increasingly as void 
fraction rises above about 20 percent, and there is genuine 
doubt whether the diffuser is of any use at all at void fractions 
above 60 percent. At the extreme case of very high void fraction 
(spray in a duct), however, the diffuser again becomes valuable. 

The essential fact here is that diffusers perform best with a 
uniform inlet velocity profile of a singie-phase flow and 
progressively less well as nonuniformities increase. Un- 
fortunately, many industrial applications require diffusers to be 
positioned downstream of bends, blockages, valves, turbo- 
machines, and so forth, leading to poorer performance. The jet 
pump must be considered at least as bad as any of the cases 
described earlier, with, at its worst, a jet being fired into a 
diffuser inlet after only a short length of mixing tube. The worst 
case would be where a jet pump was maintaining a partial 
vacuum in a nearby region with virtually no flow rate; the ratio 
of secondary to primary flows Q,/Qp is then effectively 0. 

The designer has a delicate choice to make in specifying a 
mixing tube length: a short one involves lower wall skin friction 
losses but a higher inlet velocity distortion factor. A long 
diffuser is definitely not the answer to this problem because 
not only does that involve even more wall friction losses, but 
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distortion factors nearly always increase with downstream 
travel in expanding ducts (Neve and Wirusinghe 1978; Priest 
1975; Sprenger 1962). To these performance impediments must 
be added the complications that increased noise and 
mechanical vibrations are always associated with the transient 
flow changes in stalled diffusers. 

This article addresses the problem of how badly diffuser 
performance is affected by highly distorted inlet flows and 
reports the results of a computational fluid dynamics (CFD) 
analysis of the problem, backed up by published experimental 
data, where these are applicable. 

Di f fuser  p e r f o r m a n c e  

The most fundamental definition of diffuser efficiency t/was set 
down by Patterson (1938). This is essentially the ratio of power 
transformed (a "flow work" term) to the difference in kinetic 
energies between inlet and outlet. In incompressible flow, this is 

p= dA - d A  (1) 
,1 = ½ p v ' , ,  a A  -  ,,½pV'u 
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Figure 1 Basic jet pump arrangement 

Int. J. Heat and Fluid Flow, Vol. 14, No. 4, December 1993 401 



Computational fluid dynamics analysis: R. S. Neve 

where V is the resultant velocity (in three dimensions) in the 
duct, and u is its axial component. The summation process 
implied by the integral signs is nearly always tedious and 
time-consuming to carry out, but in many cases such rigor is 
not required. For example, uniformity of pressure and velocity 
over a cross section leads to much cancellation, and Equation 
1 reduces to that for pressure recovery coefficient, Cp. 

P2 - -  Pl 
C P =  1 - 2  (2) 

~pu 1 

where fil is the space-mean value of u over the diffuser inlet 
section. 

The Engineering Sciences Data Unit (1973, 1976) data sheets 
dealing with diffusers include not only copious references to 
this subject hut also graphical data enabling performunce to 
be estimated for diffusers subject to uniform or slightly 
distorted inflows. Care is needed, however, for markedly 
nonuniform inflows because not only will pl be artificially 
depressed by the high peak inlet velocity, but the denominator 
o f  Equation 2 is based on the space-mean inlet velocity, which 
could be much lower than the peak value. Pressure recovery 
coefficient can therefore rise significantly above unity in these 
caseS .  

It has often been found better to use the kinetic energy factor 
as a measure of distortion. This is defined as the ratio of true 

kinetic energy to the value based on the space-mean velocity 
and for incompressible flow would be 

Ot = SA u3dA/Aa3 (3) 

Then a value of Cp for an ideal diffusion process can be 
defined by 

=x(½p~, ~) - =~(½p~) 
Cpl = 1 -2  

~PUl 

= 0~1 -- ~2/(AR) 2 (4) 

In  uniform flow, u would have the value 1.0 but in any other 
case would be greater. For flows where a boundary layer 
constitutes the only nonuniformity, ~ can be as low as 1.04 but 
diffuser outlet values cq can be as high as 4 for grossly distorted 
inflows (Neve and Wirasinghe 1978; Priest 1975). In particular, 

Neve and Wirasinghe have shown how = climbs from an entry 
value of 1.1 to exit values of about 2.5, 3, and 4 for diffusers 
of total cone angle 10 °, 20 °, and 30 °, respectively. 

The diffuser's so-called effectiveness can then be defined as 
the ratio of the measured Cp to that for the ideal diffusion case. 

= Cp/Cpl (5) 

In practice, even the calculation of • can be a tedious process, 
and researchers have therefore often resorted to simpler, but 
justifiable, means of defining nonuniformity. Sovran and 
Klomp (1965) used an effective area fraction E (=a/u, ,~,  a 
parameter easily calculated because ~ is the volumetric flow 
rate divided by the cross-sectional area. They justified this 
approach by showing a good correlation between Ex, Ez, and 
diffuser area ratio AR, but their inlet profiles did not extend 
beyond the fully developed pipe flow type (E = 0.84). 

Tyler and Williamson (1967) set out to extend this approach 
to higher distortion levels and attempted to find correlations 
between outlet and inlet values of several parameters including 
two based on E: the blockage B( = I - E) and a distortion 
factor DF ( = I/E). From the equations linking inlet and outlet 
conditions, Tyler and Williamson derived a nominal outlet 
distortion factor DF2n 

DF2a = (AR)[DF 2 - Cp] 1/2 (6) 

and then found a good correlation for outlet distortion in terms 
of inlet distortion and AR for diffuser geometries not too far 
removed from the ideal 20 = 7 ° suggested in most data sheets. 
Using data from Cockrell and Markland (1963), Winternitz and 
Ramsay (1957) and Sprenger (1962), involving area ratios from 
1.5 to 4, they justify the following relationship for distortions 
greater than fully developed pipe flows (BI > 0.16, DF1 > 1.19): 

B2, = 1.044 - 1.13(1 - B1)/(AR) °'~9 (7) 

If this type of approach could be used for very high inlet DF 
values, as in jet pumps, then a Cp value could be obtained from 
Equation 6, and designers could better predict the performance 
of projected jet pumps for specified duty. This project therefore 
involved setting up CFD models of jet pumps and, by 
implication, mixing tube/diffuser/tail pipe combinations to 
investigate the relationship between outlet conditions and 

N o t a t i o n  

A Area 
AR Area ratio A2/A t 
b Mixing tube area ratio Aj/At 
B Blockage ( =  1 - E) 
DCP Pressure recovery coefficient (Equation 2) 

Diameter 
dA Increment of area 
DF Distortion factor um,Jfi 
E Effective area fraction ~ / u ~  (= 1/DF) 
f Friction factor 2~,,/pfi 2 
k Kinetic energy per unit mass of turbulent 

fluctuations 
L Length 
p Static pressure 
Q Volumetric flow rate 
Re Reynolds number fiDp/p 
u Axial component of resultant velocity (time mean) 
V Resultant velocity (-- u if there are no radial or 

tangential components) 

Greek letters 

Kinetic energy shape factor (Equation 3) 
e Turbulence dissipation rate 
;t Dynamic viscosity 
t/ Diffuser efficiency (Equation 1) 
~/ Diffuser effectiveness (Equation 5) 
p Fluid density 
0 Diffuser cone half-angle 
z Shear stress 

Subscripts 
1 Diffuser inlet section 
2 Diffuser outlet section 
3 Tall pipe outlet section 
j Jet 
max Maximum value 
p Primary fluid 
s Secondary fluid 
t Mixing tube 
w Wall value 
An overbar (except for f/) indicates a space-mean 
value over a cross section 
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highly distorted inflows in an attempt to correlate DF2, , DF1, 
and AR over a very wide range of DFI values, comparison 
being made with empirical data, where possible, to validate the 
computational predictions. 

C o m p u t e r  m o d e l i n g  p r o c e d u r e  

Version 1.6 of the PHOENICS CFD package, marketed by 
CHAM Ltd. of Wimbledon, was used in this project. This is a 
finite volume technique, in the present case using a body-fitted 
coordinates method for grid generation. The k - 8 option was 
used for turbulence modeling because this has found wide 
acceptance and seems particularly applicable to problems 
involving moderate to high Reynolds numbers, especially those 
involving separated or reattaching flows, k is the kinetic energy 
per unit mass of the turbulence fluctuations and was set for an 
inlet relative turbulence intensity of 10 percent, t is the 
turbulence dissipation rate and is proportional to k 3/2 divided 
by a characteristic length (Prandtl-Kolmogorov). This gives a 
kinematic eddy viscosity vt of C~k2/f, where C~ varies somewhat 
with application but was here given the usual value of 0.09, the 
PHOENICS default setting. 

Other choices set within the PHOENICS program were that 
a "whole field" solution was required, because of the 
recirculatory nature of the flows involved here, and the 
diffusion terms were suppressed in favor of the convective ones 
to speed up the computation process. A linear relaxation factor 
of 0.3 was set for the pressure field, as recommended by CHAM 
for body-fitted coordinate cases, and a "FALSDT" value of 
1 ms, related to typical residence times, for the remaining 
variables. Wall friction was set using a log law type of profile 
for the turbulent boundary layers involved. 

The question of grid fineness is always a contentious one 
because a choice must be made between the advantages of finer 
grids giving greater accuracy of prediction and their 
disadvantages of longer computer run times. Finer grids also 
involve larger storage requirements for results and the analysis 
of such a large body of numbers can sometimes be daunting. 
It is normally essential to ensure sufficient fineness in the 
direction in which parameters are changing most rapidly, in 
this case the radial one. A grid to model a jet pump and having 
35 cells in the axial direction was therefore set up and tested 
with various numbers of cells in the radial direction. Only one 
cell width (a circular sector) was needed in the tangential 
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direction because the problem is axisymmetric. The time taken 
for each case, and the pressure and axial velocity in a specified 
cell were monitored to investigate cell fineness effects. 

Figure 2 shows how the parameters compare for cases of 10 
to 50 radial cells. Computer run time starts to increase steeply 
for more than 40 cells, and pressure and velocity are not given 
with very much greater predictive accuracy if more than 30 
cells are used. Results would seem to be within about 2 percent 
of the 50-cell case if only 30 cells are involved so a 35 
(axial) x 30 (radial) x 1 (tangential) cell grid was used for most 
of the cases presented here. Figure 3 shows a PHOENICS 
printout of a diffuser of total cone angle 40 ° and with 30 
equispaced cells per radius. The number of cells in the axial 
direction assigned to the diffuser and its entry and tail pipes 
can be varied as required, as can their relative lengths, but in 
all cases the full extent of the mixing tube was modeled. 

Versatility is also required in the radial direction. With 
reference to Figure 1, designers must choose a jet to mixing 
tube area ratio b to suit their application. A slim jet in a wide 
tube (low b) draws in more secondary fluid than a wide jet but 
cannot withstand such high back pressures as the wide one. 
Values ofb  from about 0.25 to 0.5 are common, and these have 
therefore been used as range limits in this project. The value 
of b is controlled by the radial proportion of cells at the inlet 
station that carries primary fluid, and this is easily set up in 
the PHOENICS syntax. The axial velocity set for these inlet 
cells was 100m/s, low enough to avoid compressibility 
problems but high enough to ensure realistic Reynolds 
numbers. The speed of the secondary fluid at the inlet station 
was chosen to give various QJQp ratios from zero to a value 
ensuring a near-uniform diffuser inlet flow, that is, the only 
nonuniformities were in the boundary layers. 

Large variations in distortion factor DF1 were achieved by 
varying the mixing tube length Lt/D, over a wide range from 0 
to about 12. Diffuser area ratios of 2, 4, and 5.6 were used and 
total cone angles of 7 °, 10 °, 15 °, and 20 °. This extension to 
values well above the empirically ideal 7 ° to 8 ° reflected the 
fact that designers often use wider angles where axial space is 
at a premium. Atmospheric pressure was set as a boundary 
condition across the tail pipe exit, although the absolute value 
was unimportant (in incompressible flow) because the 
program deals in pressure differences. 

The PHOENICS program solves by iteration over a slab 
of cells perpendicular to the bulk flow direction and then 
sweeps downstream to subsequent slabs. Convergence is 
therefore achieved by making sufficient sweeps to minimize the 
parameter residuals; 2OO such sweeps were made in each of the 
computer runs in this project. On a Sun Sparcstation, this took 
just over 7 min of run time. 
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D i s c u s s i o n  o f  C F D  resu l ts  

Axial pressure distribution in je t  pumps 

Initial computational runs were carried out for jet pumps with 
conventional 7 ° diffusers and b ratios of 0.3, 0.4, and 0.5 but 
with artificially long mixing tubes so that the axial pressure 
distribution could be studied. No secondary flow was added in 
these cases so the distortion factor DF has a very high value 
at inlet to the mixing tube. Figure 4 shows that static pressure 
is regained from its minimum value in the vacuum chamber 
but then lost steadily in the mixing tube, because of wall 
friction. The AR = 5.6 diffuser appears effective in returning 
the flow to atmospheric pressure at the tail pipe exit, but it is 
also clear that diffusion is not quite complete at diffuser exit, 
so the tail pipe has a part to play in the diffusion process. 

The pressure loss gradient in the mixing tube appears to be 
a function of b, but it should be remembered that the 
space-mean velocity is different in each case. For b = 0.5, this 
would be 50 m/s, and a calculation using Darcy's equation for 
the pressure loss in this case (using f = 0.079/Re TM) would 
give Ap/(½pf~ 2) = 0.225. For the b = 0.3 (,~ = 30 m/s) case, this 
would be 0.256. The Reynolds numbers for these two cases 
(based on ~) were about 7.2x 104 and 4 .3x 104 . The 
normalized pressure plot of Figure 5 shows that these are 
almost exactly the mixing tube pressure drops predicted by the 
PHOENICS program, giving confidence in subsequent results. 

Clearly these mixing tubes, having L t / D  t ~ 12, were too long 
because the static pressure drop is unacceptably large, but this, 
once again, shows the designer's dilemma: a long tube 
minimizes the worst effects of inlet distortions but involves a 
high penalty in pressure loss terms. The diffusers in each case 
give a pressure recovery, with the tail pipes, of about 0.63; this 
value should be compared with 0.75 quoted by McDonald and 
Fox (1966) and 0.76 by the Engineering Sciences Data Unit 
(1973, 1976) for uniform inlet flow. 

Distortion factor and mixing tube length 

A set of runs was undertaken to predict how DFt would change 
with mixing tube length; the results are shown in Figure 6 and 
refer to the case of b = 0.25 and no secondary flow. The initial 
value is therefore 4, but this parameter subsequently falls 
rapidly, once the mixing process is established, and would 
clearly reach its fully developed pipe flow value of DF = 1.19 
after about 3 tube diameters. Mixing tubes longer than this are 
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Figure 5 Normalized static pressure distribution (data as for 
Figure 4) 

therefore pointless, except in liquid jet cases with gas secondary 
flows (Neve 1988), where the jet needs to disintegrate before 
any serious gas ingestion can occur. 

Distortion factor and diffuser performance 

Figure 7 shows how gas ingestion affects DF t and how that, 
in turn, affects Cp. This is for a 15 °, AR = 2 diffuser having 
b = 0.25 and Lt/Dt = 1.5. As the secondary flow ratio Q,/Qt, 
rises from 0 to 3 (i.e., from the worst possible case to 
approximately uniform flow), DF falls from 3 (its value after 1.5 
diameters of mixing tube) to about unity, as required. Over the 
same range, Cp falls from a value well above unity, as predicted, 
to 0.48. This last figure agrees closely with the empirical value 
of 0.46 given by the Engineering Sciences Data Unit (1973, 
1976) for uniform inflow. 

Efliciencies, conversely, might be expected to rise with 
increasing QJQp because the introduction of secondary flow 
would ventilate (pressurize) the separated region between the 
upstream end of the primary jet and the nearby mixing tube 
wall. The efficiencies 72 and 73, defined in Equation 1, have 
been calculated using the PHOENICS output files' pressures 
and velocities at diffuser and tail pipe exits, respectively, a 
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Figure 4 Predicted static pressure distribution in jet pumps: 
AR =5.6; 20=7deg. ;  D t -21 .5mm;  u;=10Om/s; [ ]  b=0 .3 ;  
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Figure 7 Effect of secondary flow ratio on Cp and DFI: 
b = 0.25; I-t/Dr = 1.5; AR -- 2; 20 = 15 deg; [ ]  DF1; + Cp 

process rendered considerably easier using spreadsheet 
techniques. It seems remarkable that these parameters actually 
decline (Figure 8) as secondary flow is introduced but then rise 
as DF~ falls from 2 to 1 (Q~/Qp rising from 1 to 3), finishing at 
values of qz = 0.734 and ~3 = 0.767. It may be that this initial 
drop in efficiency is the result of the ventilation process, 
mentioned earlier, causing a marked change in turbulence 
properties in this area. A reduction in turbulent mixing rates 
would certainly hinder the process of jet reattachment to the 
wall by what is generally regarded as Coanda effect, in this case 
an axisymmetric one. The ability of a flow to attach to a nearby 
offset wall has been demonstrated many times in the literature 
generated by fluidics research in the 1960s and 1970s, but 
Fcrrett, Lampard, and Dugglns (1972) have reported cases of 
diffusers of cone angles up to 20 ° producing improved pressure 
recoveries using a truncation method; that is, the cone is 
shorter, but the flow is subject to a sudden enlargement into a 
tallpipe of greater diameter. This is recommended, however, 
only for cases in which axial length is at a premium. 
Improvements are also reported by Migay (1963) and Stull 
(1975) using diffusers with ribbed walls, the diffuser flow 
reattaching to the next step corner after separating from the 
previous one. The physical processes in all these various cases 
would seem to be of the same nature. 
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Figure 9 Effect of diffuser cone angle on effectiveness: • 
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Diffuser effectiveness f/, defined by Equation 5, is predicted 
to have very low values at low secondary flow ratios but then 
to climb to 0.639 for uniform flow. In this case, an experimental 
value is available for comparison: McDonald and Fox (1966) 
give 0.65 for 20 -- 15 ° and AR = 2. 

The influence of diffuser cone angle on effectiveness is shown 
in Figure 9. For an area ratio of 4, a lower inlet DF value 
(longer mixing tube) gives a higher f/, as expected, but higher 
cone angles seem to produce a slight improvement for the 
higher DF case. For the AR -- 2 diffusers, the higher distortion 
case appears to give a higher f /for  a 7 ° diffuser, but DF has 
little effect at greater cone angles. These inconsistencies are not 
easy to explain but may indicate that high distortion factors 
produce separated flows, even in 7 ° diffusers and therefore that 
cone angle, certainly up to 20 ° , has little importance. 

Continuing with 15 ° diffusers, Figure 10 shows how Cp is 
affected by inlet distortion for three different area ratios. For 
uniform flow (DF1 = 1), the Cp prediction of 0.48 for AR = 2 
has already been compared with the ESDU value of 0.46; the 
AR -- 4 prediction of 0.52 compares slightly less well with the 
experimental figures of 0.55 from McDonald and Fox and 0.58 
from ESDU, The rest of the figure shows how markedly Cp 
increases above unity, for reasons given earlier, as DF1 climbs 
to about 4, irrespective of area ratio. Effectiveness, conversely, 
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Figure 8 Diffuser efficiencies and effectiveness (data as for 
Figure 7): [ ]  q2; + q~; • Effectiveness [Equation (5)] 
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Figure 10 Effect of distortion factor on Cp (20--15 degrees): 
[ ] A R = 2 ;  + 4 ; • 5 . 6  
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falls fairly rapidly with DF~ to about a third of its uniform flow 
value, once again irrespective of area ratio (Figure 11). 

Correlation of inlet and outlet  parameters 

It was the stated goal of Sovran and Klomp (1965) and Tyler 
and Williamson (1967) to determine a reliable correlation 
between inlet and outlet distortion parameters and diffuser area 
ratio. The former obtained such a relationship for inlet 
distortions no worse than fully developed pipe flow; the latter 
extended this to higher DF values. The present work has 
extended distortion factors still further, to about 4, and 
comparison with Tyler and Williamson's results is therefore 
required. 

Figure 12 shows how the nominal DF 2 value (Equation 6) 
varies with DFI; clearly, area ratio is an associated variable. If 
DF2, is represented in its B2n form (B = 1 -  {1/DF}), the 
results of Figure 12 can be compared with the "best fit" results 
of Tyler and Williamson (Equation 7) for each given area ratio; 
these are shown in Figure 13 where the lines represent the 
values of Equation 7 for the area ratios concerned. Agreement 
is seen to be fairly close, particularly at the high distortion end 
of the data range. 
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Nominal outlet blockage vs. inlet blockage. Comparison 
of PHOENICS predictions (7 < 20 < 20 degrees) with Tyler and 
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Data analysis shows, however, that the current results can 
be correlated more straightforwardly using 0.83 as the power 
of area ratio, rather than the 0.69 used by Tyler and 
Williamson, and DF2, divided by that quantity then correlates 
well with DFI (Figure 14). A data regression analysis shows the 
best fit straight line for the points in Figure 14 to be given by 

DFz,/(AR) °'s3 = 1.035(DF1) (8) 

The R 2 value for the straight line fit is 0.978. A curve fit 
involving second and third powers of DF~ is not really 
warranted by the scatter involved; R z increases to only 0.981 
for the quadratic and to 0.982 for the cubic. 

Contour plots f rom the computat ional  results 

The remaining four figures in this article show some of the 
graphical output from the PHOENICS runs, in these cases for 
a 15 °, AR = 4 diffuser with b--0.25,  Lt/Dt = 1.5 and no 
secondary flow. 

Predicted static pressure contours can be seen in Figure 15. 
A pressure of 2.71 kPa.vac, is generated close to the point where 
the primary jet enters the mixing area, and the tube is seen to 
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Figure 15 Predicted pressure contours in the diffuser entry 
region. Figures are in Pa. gauge 
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Figure 16 Contours of axial velocity in the mixing tube and 
diffuser. Figures are in m/s 

be very effective at raising this to above 1 kPa.vac, before the 
flow enters the diffuser. It is also clear from the contours that 
near the diffuser and mixing tube entry sections, static pressure 
i s  higher on the centerline than at the wall, a~ indication of 
the streamline curvature hereabouts. 

The axial velocity contours are shown in Figure 16, which 
backs up Figure 15 in suggesting the presence of a reattachment 
vortex, with reversed flow velocities of at least 20 m/s. The 10 
and 20 m/s contours in the diffuser show the extent of the 
boundary layers or separated regions next to the walls. The 
mean speed in the tail pipe will have been 6.25 m/s. 

One advantage of using computational techniques is that 
variables can be calculated and inspected, which would 
otherwise be extremely difficult to measure experimentally. 
Figures 17 and 18 show, respectively, the k and e contours for 
the near-jet regions, k is the kinetic energy per unit mass of the 
turbulent fluctuating components and e the dissipation rate. 
Not surpr~ingly, both peak in the area of maximum shearing 
rate, between the emerging jet and the region under partial 
vacuum. In fact, the contours are very similar, in shape though 
not in numerical value. 

C o n c l u s i o n  

Despite the very considerable nonuniformities of inlet flow 
involved, the diffusers in jet pumps are predicted still to be 
necessary and useful for static pressure retrieval in single-phase 
devices. Comparison with published experimental data gives 
confidence in these CFD predictions. 

Although pressure recovery coefficients for the diffusers were 
shown to increase markedly with increased inlet distortion 
factor, this was simply due to the way in which Cp is defined. 
Diffuser effectiveness, a more realistic measure of performance, 
was shown to fall, for increasing inlet distortions, to about a 
third of its uniform flow value. 

Mixing tubes longer than about 3 diameters are shown to 
be pointless, for single-phase flow, because the velocity profile 
has often smoothed itself to a fully developed pipe flow value 
by then, and greater pipe length simply involves more pressure 
losses. A designer could then use Figure 14 or Equation 8 to 
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Figure 17 Contours of k in the mixing region. Figures are in 
mZ/$ 2 

Computational fluid dynamics analysis: R. $. Neve 
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Figure 18 Contours of 8 in the mixing region. Figures are in 
(103 x mZ/s 3) 

obtain a D F , ,  value for use in Equation 6. The diffuser 
performance of a given geometry of jet pump could then be 
predicted for a known downstream back pressure. 

The results contributing to, and culminating in, Figure 14 
cover diffuser cone angles from 7 ° to 20 °, area ratios from 2 to 
5.6, and inlet Reynolds numbers from 4.3 x I(P to 1.3 x 106 
and are therefore considered to be widely applicable. They 
certainly extend well beyond the optimum diffuser (near 7 ° ) 
cases and distortion factors quoted by previous researchers. It 
should be borne in mind, however, that these are CFD 
predictions. 
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